3y^2+5=113

Simple and best practice solution for 3y^2+5=113 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3y^2+5=113 equation:



3y^2+5=113
We move all terms to the left:
3y^2+5-(113)=0
We add all the numbers together, and all the variables
3y^2-108=0
a = 3; b = 0; c = -108;
Δ = b2-4ac
Δ = 02-4·3·(-108)
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1296}=36$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-36}{2*3}=\frac{-36}{6} =-6 $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+36}{2*3}=\frac{36}{6} =6 $

See similar equations:

| 1=4+z | | 5(6x-4)=-4x+5(7x-5) | | 52=-(3+p) | | (X+1/3)5+2x-1/7=20 | | 2p=3p-11 | | 6x+2x-10=70 | | 16t=18t-4 | | 3x+13=23-2x | | 7-2/3x=5 | | (1-4x)(3+2x)=0 | | .15x=10+.1x | | 5w+17=7w-1 | | 66+x-56=180 | | 3(3n-6)=3(1+2n) | | 2x^2-30x+153=0 | | 66+x-55=180 | | 5(4-2x)=0 | | 2=-2(c-4) | | 8+y=1 | | 66-x=180 | | 17+2x/2+3x-1/5=0 | | 10-9v^2=-305 | | 22–3u=10 | | 23x+18-12=62 | | 8k+7k=30 | | 1+1/9x=1/11x | | 5(2x+40)=20 | | 0.375-0.1875+0.75=0.75+r | | 62=14+2x | | 8a-9=-3a+12 | | 65/37=x/100 | | 10=2(2+s) |

Equations solver categories